Fast fabrication of copper nanowire transparent electrodes by a high intensity pulsed light sintering technique in air.
نویسندگان
چکیده
Copper nanowire transparent electrodes have received increasing interest due to the low price and nearly equal electrical conductivity compared with other TEs based on silver nanowires and indium tin oxide (ITO). However, a post-treatment at high temperature in an inert atmosphere or a vacuum environment was necessary to improve the conductivity of Cu NW TEs due to the easy oxidation of copper in air atmosphere, which greatly cancelled out the low price advantage of Cu NWs. Here, a high intensity pulsed light technique was introduced to sinter and simultaneously deoxygenate these Cu NWs into a highly conductive network at room temperature in air. The strong light absorption capacity of Cu NWs enabled the welding of the nanowires at contact spots, as well as the removal of the thin layer of residual organic compounds, oxides and hydroxide of copper even in air. The Cu NW TE with a sheet resistance of 22.9 Ohm sq(-1) and a transparency of 81.8% at 550 nm has been successfully fabricated within only 6 milliseconds exposure treatment, which is superior to other films treated at high temperature in a hydrogen atmosphere. The HIPL process was simple, convenient and fast to fabricate easily oxidized Cu NW TEs in large scale in an air atmosphere, which will largely extend the application of cheap Cu NW TEs.
منابع مشابه
Improved efficiency of hybrid organic photovoltaics by pulsed laser sintering of silver nanowire network transparent electrode.
In this Research Article, we demonstrate pulsed laser processing of a silver nanowire network transparent conductor on top of an otherwise complete solar cell. The macroscopic pulsed laser irradiation serves to sinter nanowire-nanowire junctions on the nanoscale, leading to a much more conductive electrode. We fabricate hybrid silicon/organic heterojunction photovoltaic devices, which have ITO-...
متن کاملSynthesis of ultralong copper nanowires for high-performance transparent electrodes.
Cu nanowires hold great promise for the fabrication of low-cost transparent electrodes. However, their current synthesis is mainly performed in aqueous media with poor nanowire dispersibility. We report herein the novel synthesis of ultralong single-crystalline Cu nanowires with excellent dispersibility, providing an excellent candidate material for high-performance transparent electrode fabric...
متن کاملFabrication of Nanostructured Cu matrix Nanocomposites by High Energy Mechanical Milling and Spark Plasma Sintering
Spark plasma sintering (SPS) is a sintering process that is capable of sintering hard worked powders in short times. This technique was used to fabricate bulk Cu and Cu-SiC nanocomposites. Pure Cu and mixed powders of Cu including 4 vol% of SiC nanoparticles were mechanically alloyed for 25 h and sintered at 750˚C under vacuum condition by SPS method. Microstructures of the materials were chara...
متن کاملIn-situ Fabrication of Transparent Magnesium Aluminate Spinel by Spark Plasma Sintering
Transparent polycrystalline spinel ceramic was fabricated without any sintering aids by spark plasma sintering method of a mixture of Al2O3 and MgO powders for only 10min soak at 1250°C. Densification, microstructure and optical transparency of spinel were examined. The spinel exhibits an in-line transmission of 55% for a visible-wavelength of 470nm and high hardness value of 2040 HV.
متن کاملOrganic–inorganic bismuth (III)-based material: a lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites
Metal nanowire networks represent a promising candidate for the rapid fabrication of transparent electrodes with high transmission and low sheet resistance values at very low deposition temperatures. A commonly encountered obstacle in the formation of conductive nanowire electrodes is establishing high quality electronic contact between nanowires in order to facilitate long range current transp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 46 شماره
صفحات -
تاریخ انتشار 2015